AtCoder Regular Contest 074

E - RGB Sequence


Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB

配点 : 800

問題文

N 個のマスが横一列に並んでいます。 マスには左から順に 1, 2, ..., N と番号が振られています。

すぬけ君は、各マスを 赤 / 緑 / 青 のどれかの色で塗ろうとしています。 すぬけ君の美的感覚によると、次の M 個の条件がすべて成り立つ必要があるそうです。 i 番目の条件は次のようなものです。

  • マス l_i, l_i + 1, ..., r_i の色の種類数がちょうど x_i である。

条件がすべて成り立つようなマスの配色は何通りでしょうか? 10^9+7 で割った余りを求めてください。

制約

  • 1 ≤ N ≤ 300
  • 1 ≤ M ≤ 300
  • 1 ≤ l_i ≤ r_i ≤ N
  • 1 ≤ x_i ≤ 3

入力

入力は以下の形式で標準入力から与えられる。

N M
l_1 r_1 x_1
l_2 r_2 x_2
:
l_M r_M x_M

出力

条件がすべて成り立つようなマスの配色は何通りか? 10^9+7 で割った余りを出力せよ。


入力例 1

3 1
1 3 3

出力例 1

6

次の 6 通りです。

  • RGB
  • RBG
  • GRB
  • GBR
  • BRG
  • BGR

ただし、R / G / B はそれぞれ 赤 / 緑 / 青 のマスを表します。


入力例 2

4 2
1 3 1
2 4 2

出力例 2

6

次の 6 通りです。

  • RRRG
  • RRRB
  • GGGR
  • GGGB
  • BBBR
  • BBBG

入力例 3

1 3
1 1 1
1 1 2
1 1 3

出力例 3

0

次の 0 通りです。


入力例 4

8 10
2 6 2
5 5 1
3 5 2
4 7 3
4 4 1
2 3 1
7 7 1
1 5 2
1 7 3
3 4 2

出力例 4

108

Score : 800 points

Problem Statement

There are N squares arranged in a row. The squares are numbered 1, 2, ..., N, from left to right.

Snuke is painting each square in red, green or blue. According to his aesthetic sense, the following M conditions must all be satisfied. The i-th condition is:

  • There are exactly x_i different colors among squares l_i, l_i + 1, ..., r_i.

In how many ways can the squares be painted to satisfy all the conditions? Find the count modulo 10^9+7.

Constraints

  • 1 ≤ N ≤ 300
  • 1 ≤ M ≤ 300
  • 1 ≤ l_i ≤ r_i ≤ N
  • 1 ≤ x_i ≤ 3

Input

Input is given from Standard Input in the following format:

N M
l_1 r_1 x_1
l_2 r_2 x_2
:
l_M r_M x_M

Output

Print the number of ways to paint the squares to satisfy all the conditions, modulo 10^9+7.


Sample Input 1

3 1
1 3 3

Sample Output 1

6

The six ways are:

  • RGB
  • RBG
  • GRB
  • GBR
  • BRG
  • BGR

where R, G and B correspond to red, green and blue squares, respectively.


Sample Input 2

4 2
1 3 1
2 4 2

Sample Output 2

6

The six ways are:

  • RRRG
  • RRRB
  • GGGR
  • GGGB
  • BBBR
  • BBBG

Sample Input 3

1 3
1 1 1
1 1 2
1 1 3

Sample Output 3

0

There are zero ways.


Sample Input 4

8 10
2 6 2
5 5 1
3 5 2
4 7 3
4 4 1
2 3 1
7 7 1
1 5 2
1 7 3
3 4 2

Sample Output 4

108

Submit提出する